


United States Department of Agriculture National Institute of Food and Agriculture

BioChar's Removal of Contaminants in Agricultural Soil Tannis Breure, Undergraduate Student Environmental Engineering

Tannis Breure, Undergraduate Student Environmental Engineering Mentor: Rebecca Muenich¹, PhD, Clinton Williams², PhD ¹School of Sustainable Engineering and the Built Environment, ²USDA Arid Lands Agricultural Research Center

Motivation

- Escherichia coli (E. coli) threatens agricultural fields frequently, potentially impacting human and ecosystem health
- Given recent pathogenic outbreaks, an affordable and effective solution to remove *E. coli* from arid agricultural soils is needed
- BioChar has shown promise in removing contaminants in agricultural soils, but the effects are understudied in arid soil

Experimental Procedure

Fig. 1 Column Experiment Schematic

Fig. 2 Bamboo BioChar

Expected Results

In accordance with literature and previous research on non-arid soils, BioChar should remove between 70-99% of *E. coli* from arid soils

These results can be utilized in urban agriculture and large-scale farming to minimize the adverse effects of *E. coli,* while increasing soil carbon

This work is also supported by the USDA National Institute of Food and Agriculture, Capacity Building Projects for Non-Land Grant Colleges of Agriculture project 1017146, grant number 2018-70001-28751.

Computational Method

- Analysis of functional groups and heat of pyrolysis of the BioChar
- Compare to pharmaceutical removal in sand
- MATLAB method compared to Hydrus removal of pharmaceuticals from wastewater
- Apply program to model BioChar's *E. coli* removal

Conclusions and Next Steps

- BioChar has also shown promise in removing pharmaceuticals from wastewater, by utilizing the computational model for pharmaceutical removal, assumptions and parallels can be drawn to model *E. coli* removal as well
- Future experiments should be conducted with arid agricultural soil

